## mn@ППplast

## CATALOGUE



通

## (

## SN10 \& SN16 <br> POLYPROPYLENE

## CONTENTS:

Introduction ..... 5
Transport and storage ..... 9
Laying instructions ..... 10
Product catalogue ..... 18


## , iswermer h2000



## TECHNICAL DATA

## Material

Polypropylene (PP), mineral-reinforced.

## Design

Pipes with full (solid) walls of homogeneous structure

## Joining

By means of couplers with factory-fitted proprietary gasket. The pipe socket has a specially formed groove for fitting with a triple lip gasket to increase the tightness and reliability of the connection.

## Sealing

Rubber rings compliant with DIN EN 681.

## Colour

May green RAL 6017.

## Approval

Pipes and fittings are manufactured according to technical approval ITB AT-15-9456/2015 issued by the Building Research Institute.

## Quality requirements

DIN EN 14758. The basis for production of pipes and fittings laid in the ground include the requirements of DIN 19550 standard as well as the general quality requirement of DIN 8078 standard.

## Comprehensive programme

The KG 2000 SN10 \& SN16 system consists of pipes and fittings with sizes from DN110 to DN500 and is suitable for the construction of private and municipal drainage systems, while providing flexibility in their design and assembly.

## Area of use

Drains and sewers laid in the ground, both under and away from the road, and used as culverts. The pipes are resistant to common sewage ( $\mathrm{pH} 2-\mathrm{pH} 12$ ). In special cases, refer to the information on chemical resistance in Annex 1 to DIN 8078.

Elements of the KG 2000 SN10 \& SN16 system can be used in accordance with the generally accepted principles of design and assembly.

## POLYPROPYLENE - THE MATERIAL OF THE FUTURE

Plastic has been successfully used in the production of pipes for decades. The pipes and fittings of the KG 2000 system are made of polypropylene, which is a thermoplastic material from the group of polyolefins. Polypropylene has excellent mechanical, chemical, physical and ecological properties. No hygienic objections, corrosion resistance, good processing properties and many other aspects are essential for a wide range of applications. Under high safety requirements, polypropylene is also used in the automotive industry and in the production of fuel tanks.




## JOINING IS CRUCIAL

An important assumption in the private and municipal drainage of buildings is a permanently tight connection of the sewage and groundwater piping. The new, innovative and patented seal is the result of a long development process. The decisive improvement is the special shape of the ring.

## SEALING



- tension edge
- retaining edge
- scraper edge

4 - sealing ring

## FUNCTIONS

tension edge - prevents deposits from gathering between the pipe wall and the gasket.
retaining edge - causes the lip seal to be pressed against the pipe edge and prevents the sealing ring from slipping out or rolling up.
scraper edge - used to eliminate impurities depositing on the pipe.
sealing ring - permanently seals the pipe connection. Firstly, it ensures that sewage does not get into the groundwater (penetration), and secondly, that the groundwater does not enter the pipeline network (infiltration). Pipe tightness testing in accordance with DIN EN 1610 is carried out with air and water at a pressure of 0.05 bar to 0.5 bar and in vacuum.

The KG 2000 system is also suitable for installation in drinking water protection zone II. Appropriate testing of the system according to ATV A142 at a pressure of 2.4 bar has been confirmed by MPA Darmstadt.

## FORCES ACTING IN THE COURSE OF PRESS FITTING

The forces acting in the course of press fitting are considerably reduced by the special shape of the ring. This makes the pipe assembly much easier compared to traditional sewer pipe systems. It saves time and money during assembly and increases the fitting safety and tightness.


## ENVIRONMENTALLY FRIENDLY

- polypropylene PP material
- neutral to groundwater
- permanent tightness of connections
- 100\% recyclable


## Excellent resilience

The dynamic strength and resilience prove profitable not only thanks to the ability of withstanding mechanical stress during operation, but also when laying at freezing temperatures. There is no risk of breakage, even at $-20^{\circ} \mathrm{C}$.

## Optimum hydraulic performance

Polypropylene has a smooth surface that is extremely abrasion resistant. No deposits may build up on the almost pore-free inner wall. On the one hand, this means optimum hydraulic performance; on the other hand, self-cleaning (extended maintenance intervals).

Polypropylene is the material of the future. PP is produced and processed in an environmentally friendly manner with reduced $\mathrm{CO}_{2}$ emissions. It is not poisonous! $100 \%$ recyclable.

## TRANSPORT AND STORAGE OF KG 2000 SN10 \& SN16 PIPES AND PIPELINE CARRIERS

Elements of the KG 2000 system must be protected against damage. During transport, pipes should lie over their entire length to prevent bending. Exposure to impact must be avoided, especially at low temperatures. Pipes and fittings can be stored outdoors.

However, the following rules must be followed when storing pipes:

- The pipes should be stored in a way that guarantees their correct layering and prevents deformations.
- Pipes can be stored with or without wooden spacers.
- Pipe couplings should lie freely in horizontal and vertical directions during storage.
- The height of the stored pipes should not exceed 2 m .



## LAYING INSTRUCTIONS

## SCOPE OF APPLICATION

The following instructions apply to the use of the polypropylene (PP) KG 2000 system with general approval from the construction supervision. Pipes and fittings in May green RAL 6017 colour can be used as the main installation buried in the ground or as a sewage system according to DIN 1986-4 and DIN EN 1610.

## AREAS OF APPLICATION

KG 2000 sewage pipes and KG 2000 fittings made of polypropylene are suitable for installation in the ground and for transporting waste water in accordance with DIN 1986, part 3. In special cases, refer to the information on chemical resistance in Annex 1 to DIN 8078.

Pipes and pipeline parts can be used in the following areas of application:

- Main installation
- Connected channel

In addition, in heavy-duty load areas (SLW 60) with a minimum cover of 0.8 m , the maximum cover of 6 m and in groundwater areas.


## CONCRETING

Polypropylene pipes and fittings can be concreted directly. However, the following instructions should be observed when doing so:

- Cover the coupling with adhesive tape so that cement milk cannot penetrate inside, which could later interfere with the functioning of the plug-in/put-on coupling.
- Secure the pipes against lift. The fastening distances must be selected so that there are no unacceptable bends (formation of water pockets).
- The thermally conditioned changes in length must be taken into account, both for the assembly and practical use.


## SUPPORT AND LAYING IN THE GROUND/EARTHING UP

Pipes can be laid on even, relatively loose, fine-grained substrates as they allow the pipes to be supported over their entire length. In the coupling area, recesses must be provided in the lower area of the substrate so that a correct connection can be formed. The recess must not be larger than necessary for proper joining. When the existing substrate is not suitable to provide support, the bottom should be dug deeper and a support should be prepared. The thickness of the bottom layer of the substrate must not exceed the following lower limit values:

- 100 mm under normal soil conditions;
- 150 mm for rocky or hard soils.

The substrate top layer thickness should comply with the static calculation conditions to obtain the support angle of $180^{\circ}$, i.e. $0.5 \times$ DA in general.

If the bottom has insufficient bearing capacity, special measures are necessary. If, due to construction technology, a concrete slab is required in the support area, it is recommended to provide a suitable layer between the pipe and the concrete slab, approx. 150 mm thick under the pipes and approx. 100 mm under the connection. If, for static reasons, additional measures are considered necessary, a concrete slab in place of the concrete cover is recommended to distribute the weight above the covering zone. If a concrete cover is provided, it must be constructed in such a manner that it can absorb the entire static load.

surface
bottom edge of the road or rail structure, if present ditch walls
main infill (3.6)
cover (3.5)
side infill (3.12)
top pack layer
bottom pack layer
bottom
cover height
pack thickness
transmission zone thickness
ditch depth
bottom pack layer thickness
top pack layer thickness
cover thickness

## LAYING PROCESS

KG 2000 SN10 \& SN16 pipes and pipeline parts must be properly inspected for possible damage before assembly. Each pipe and fitting must be measured for slope and direction. Keep a straight, direct course within the recommended slope.


In exceptional cases, the line routing can be made from DN/OD 110 to DN/OD 200 as shown in the above sketch. The values in the following table must not be exceeded.

|  | $\mathbf{h}$ | $\mathbf{h}$ | $\mathbf{h}$ | $\mathbf{h}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{D N}$ | $\mathbf{1 1 0}$ | $\mathbf{1 2 5}$ | $\mathbf{1 6 0}$ | $\mathbf{2 0 0}$ |
| 8 m | 0.24 | 0.21 | 0.17 | 0.13 |
| 12 m | 0.54 | 0.28 | 0.38 | 0.3 |
| 16 m | 0.97 | 0.85 | 0.67 | 0.53 |
| $R[\mathrm{~m}]$ | 33 | 38 | 47 | 61 |

[^0]
## CUTTING TO LENGTH AND CHAMFERING

If necessary, the pipes should be cut to length using a suitable plastic cutter or fine tooth saw. The cut should be made perpendicularly to the pipe axis. Cutter boxes may be helpful. All burrs that have appeared on the edges in the course of cutting must be removed. The pipe ends should be chamfered with a chamfering tool or a coarse file at an approx. angle of $15^{\circ}$ as shown in the figure.


Cutting to length with a cutter box
Chamfering

| DN/OD | $\mathbf{1 1 0}$ | $\mathbf{1 2 5}$ | $\mathbf{1 6 0}$ | $\mathbf{2 0 0}$ | $\mathbf{2 5 0}$ | $\mathbf{3 1 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b mm ca. | 6 | 6 | 7 | 9 | 9 | 12 |

## JOINING

- Remove dirt from the ends of pipes to be joined (tips) and the coupling, as well as from the sealing elements.
- Check the position and integrity of the sealing elements.
- Insert the pipe end into the coupling up to the stop and mark it at the edge of the coupling with a pencil or felt-tip pen. Then pull the pipe end out of the coupling by approx. 3 mm per 1 m of the working length of the laid pipe, but not more than 10 mm .


## CONNECTING TO BUILDINGS

Connections to buildings (shafts, etc.) must be articulated and performed with the use of shaft lining. The sealing between the shaft lining and the channel pipe is achieved with a rubber gasket.

## PACKING AND SEALING

Both the existing substrate and externally delivered material can be used as construction material for the transmission zone, as long as neither the pipe packing material nor the groundwater are disturbed. Suitable packing material may consist of diversely sized, granular, unbound substrate with the largest grains $<22 \mathrm{~mm}$ or broken/crushed building materials with the largest grain size of up to 11 mm . Hydraulically bound building materials such as stabilised substrate, lightweight concrete, matured concrete etc. are not recommended.

## When forming the substrate in the transmission zone up to 30 cm above the pipeline peak point, it is especially necessary to ensure that:

- pipelines do not deviate from their direction and position; a sand cone or other auxiliary measures may be helpful,
- the formation of cavities under the pipe is prevented and the support angle serving as the basis for static calculations is achieved by layered shaping of the proper substrate and intensive sealing up to the support height.

The sealing and the introduced material contribute directly to the stability of the equilibrium. Each intermediate layer of the backfilled substrate must be sealed - manually, using light sealing devices. Then, further backfilling should be performed in accordance with the planned process and set parameters to avoid surface subsidence.

## INSPECTION AND TIGHTNESS

The checking of pipeline, shaft and inspection opening tightness must be carried out either using air ("L" method) or water ("W" method). With the "L" method, the number of corrective measures and re-checks in the event of failure is unlimited. For one-off or repeated inspections using the air method, it is acceptable to switch to the water method and the result of the water method inspection is decisive.

## INSPECTION USING WATER

All openings in the section of the installation subjected to inspection, including all branches and outlets, must be tightly closed and secured. It is recommended - especially in built-up areas - to secure the fittings by driving piles or by using appropriate securing bands to avoid dislocation. Even in simple installations, the pipes and test plugs must be adequately supported against pressure forces acting in a horizontal direction. The pipeline is to be protected against dislocation, as long as it is not already covered. The installation is to be filled with water so that there is no air in it.
Therefore, it must be filled slowly so that the air contained in the pipeline escapes from appropriately sized vents located at the highest point of the installation.


Allow sufficient time (1 hour) between filling and inspecting the system to allow any air contained in the system to slowly escape during the filling process. The test pressure should be related to the deepest point of the inspected section. Free water level installations should be controlled with overpressure of 0.5 bar. The test pressure, which must be established before starting the test, is to be maintained in accordance with DIN EN 1610 for 30 minutes. In this case, the amount of water needed for its intake should be topped up and measured by continuous refilling. The inspection requirement for the pipeline is met when the volume of refilled water does not exceed $0.15 \mathrm{l} / \mathrm{m}^{2}$ within 30 minutes. Note: $\mathrm{m}^{2}$ describes the moist inner surface.

## AT LEAST 100 YEARS OF SAFE FUNCTIONING

Due to its technical properties, the KG 2000 SN10 \& SN16 system is recommended as the sewage system of the future - for at least the next 100 years.



## PIPES WITH SOCKET SN10 (KGEM)

| DN <br> $[\mathbf{m m}]$ | $\mathbf{s}$ <br> $[\mathbf{m m}]$ | $\mathbf{D}$ <br> $[\mathrm{mm}]$ | $\mathbf{t}$ <br> $[\mathrm{mm}]$ | $\mathbf{L}$ <br> $[\mathrm{mm}]$ | Art. no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 110 | 3.4 | 128.4 | 72 | 500 | 70320 |
| 110 | 3.4 | 128.4 | 72 | 1000 | 70340 |
| 110 | 3.4 | 128.4 | 72 | 2000 | 70360 |
| 110 | 3.4 | 128.4 | 72 | 3000 | 70370 |
| 110 | 3.4 | 128.4 | 72 | 5000 | 70380 |


| 125 | 3.9 | 146.0 | 80 | 500 | 70420 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 125 | 3.9 | 146.0 | 80 | 1000 | 70440 |
| 125 | 3.9 | 146.0 | 80 | 2000 | 70460 |
| 125 | 3.9 | 146.0 | 80 | 3000 | 70470 |
| 125 | 3.9 | 146.0 | 80 | 5000 | 70480 |


| 160 | 4.9 | 186.6 | 95 | 500 | 70520 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 160 | 4.9 | 186.6 | 95 | 1000 | 70540 |
| 160 | 4.9 | 186.6 | 95 | 2000 | 70560 |
| 160 | 4.9 | 186.6 | 95 | 3000 | 70570 |
| 160 | 4.9 | 186.6 | 95 | 5000 | 70580 |


| 200 | 6.2 | 236.0 | 123 | 500 | 70620 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 6.2 | 236.0 | 123 | 1000 | 70640 |
| 200 | 6.2 | 236.0 | 123 | 2000 | 70660 |
| 200 | 6.2 | 236.0 | 123 | 3000 | 70670 |
| 200 | 6.2 | 236.0 | 123 | 5000 | 70680 |


| 250 | 7.7 | 287.2 | 133 | 1000 | 70740 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 250 | 7.7 | 287.2 | 133 | 3000 | 70770 |
| 250 | 7.7 | 287.2 | 133 | 6000 | 70790 |


| 315 | 9.7 | 358.8 | 155 | 1000 | 70840 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 315 | 9.7 | 358.8 | 155 | 3000 | 70870 |
| 315 | 9.7 | 358.8 | 155 | 6000 | 70890 |


| 400 | 12.3 | 455.0 | 180 | 1000 | 70940 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 400 | 12.3 | 455.0 | 180 | 3000 | 70970 |
| 400 | 12.3 | 455.0 | 180 | 6000 | 70990 |
|  |  |  |  |  |  |
| 500 | 15.3 | 565 | 317 | 1000 | 71040 |
| 500 | 15.3 | 565 | 317 | 3000 | 71070 |
| 500 | 15.3 | 565 | 317 | 6000 | 71090 |

## PIPES WITH SOCKET SN16 (KGEM)



## BENDS (KGB)

| DN <br> $[\mathbf{m m}]$ | Angle <br> $\mathbf{\alpha}$ | Z1 <br> $[\mathbf{m m}]$ | Z2 <br> $[\mathbf{m m}]$ | $\mathbf{L 1}$ <br> $[\mathbf{m m}]$ | Art. no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 110 | $15^{\circ}$ | 9 | 16 | 87 | 71300 |
| 110 | $30^{\circ}$ | 17 | 23 | 95 | 71310 |
| 110 | $45^{\circ}$ | 26 | 29 | 94 | 71320 |
| 110 | $67^{\circ}$ | 41 | 47 | 119 | 71330 |
| 110 | $87^{\circ}$ | 59 | 65 | 137 | 71350 |
| 125 | $15^{\circ}$ | 10 | 19 | 93 | 71400 |
| 125 | $30^{\circ}$ | 19 | 27.5 | 102 | 71410 |
| 125 | $45^{\circ}$ | 29 | 36 | 112 | 71420 |
| 125 | $67^{\circ}$ | 44 | 54 | 127 | 71430 |
| 125 | $87^{\circ}$ | 66 | 72 | 145 | 71450 |
| 160 | $15^{\circ}$ | 24 | 19 | 120 | 71500 |
| 160 | $30^{\circ}$ | 24 | 34 | 125 | 71510 |
| 160 | $45^{\circ}$ | 37 | 45 | 144 | 71520 |
| 160 | $67^{\circ}$ | 56 | 69 | 161 | 71530 |
| 160 | $87^{\circ}$ | 84 | 91 | 180 | 71550 |
| 200 | $15^{\circ}$ | 15 | 31 | 158 | 71600 |
| 200 | $30^{\circ}$ | 29 | 46 | 162 | 71610 |
| 200 | $45^{\circ}$ | 46 | 57 | 189 | 71620 |
| 200 | $87^{\circ}$ | 84 | 91 | 215 | 71655 |
| 250 | $15^{\circ}$ | 23 | 44 | 163 | 71700 |
| 250 | $45^{\circ}$ | 59 | 77 | 199 | 71720 |
| 250 | $87^{\circ}$ | 92 | 109 | 224 | 71720 |
| 315 | $15^{\circ}$ | 28 | 56 | 188 | 71800 |
| 315 | $45^{\circ}$ | 73 | 98 | 233 | 71820 |
| 400 | $15^{\circ}$ | 29 | 67 | 220 | 71900 |
| 400 | $45^{\circ}$ | 92 | 120 | 283 | 71920 |
| 500 | $15^{\circ}$ | 78 | 90 | 395 | 71100 |
| 500 | $30^{\circ}$ | 95 | 116 | 415 | 71110 |
| 500 | $45^{\circ}$ | 110 | 140 | 440 | 71120 |
|  |  |  |  |  |  |

## CAST IRON PIPE CONNECTORS (KGUG)



| DN <br> $[\mathbf{m m}]$ | $\mathbf{d}_{\mathbf{1}}$ <br> $[\mathbf{m m}]$ | $\mathbf{L}$ <br> $[\mathbf{m m}]$ | Art. no. |
| :---: | :---: | :---: | :---: |
| 110 | 125 | 60 | 78320 |
| 125 | 152 | 65 | 78420 |
| 160 | 177 | 70 | 78520 |

## BRANCHES (KGEA) <br> FITTINGS MUST NOT BE SHORTENED!

$\begin{array}{llllll}\text { DN1/DN2 } & \text { Angle } & z_{1} & z_{2} & z_{3} & \text { Art. no. }\end{array}$

| [mm] | $\boldsymbol{\alpha}$ | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ | $[\mathrm{mm}]$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $110 / 110$ | $45^{\circ}$ | 26 | 134 | 134 | 72330 |
| $125 / 110$ | $45^{\circ}$ | 81 | 91 | 91 | 72340 |
| $125 / 125$ | $45^{\circ}$ | 29 | 152 | 152 | 72440 |
| $160 / 110$ | $45^{\circ}$ | 2 | 168 | 162 | 72350 |
| $160 / 125$ | $45^{\circ}$ | 10 | 179 | 175 | 72450 |
| $160 / 160$ | $45^{\circ}$ | 37 | 194 | 194 | 72550 |
| $200 / 110$ | $45^{\circ}$ | 5 | 172 | 188 | 72360 |
| $200 / 160$ | $45^{\circ}$ | 19 | 221 | 218 | 72560 |
| $200 / 200$ | $45^{\circ}$ | 46 | 244 | 244 | 72660 |
| $250 / 160$ | $45^{\circ}$ | 57 | 258 | 311 | 72760 |
| $250 / 250$ | $45^{\circ}$ | 57 | 311 | 311 | 72770 |
| $315 / 160$ | $45^{\circ}$ | 40 | 301 | 250 | 72850 |
| $315 / 200$ | $45^{\circ}$ | 72 | 325 | 393 | 72860 |
| $315 / 315$ | $45^{\circ}$ | 72 | 393 | 393 | 72880 |
| $400 / 160$ | $45^{\circ}$ | 82 | 394 | 526 | 72940 |
| $400 / 200$ | $45^{\circ}$ | 55 | 417 | 555 | 72960 |
| $400 / 315$ | $45^{\circ}$ | 72 | 447 | 642 | 72970 |
| $400 / 400$ | $45^{\circ}$ | 78 | 683 | 683 | 72990 |
| $500 / 160$ | $45^{\circ}$ | 290 | 460 | 400 | 71130 |
| $500 / 315$ | $45^{\circ}$ | 315 | 542 | 608 | 71150 |
| $500 / 500$ | $45^{\circ}$ | 380 | 712 | 720 | 71140 |
| $110 / 110$ | $87.5^{\circ}$ | 59 | 64 | 64 | 74330 |
| $160 / 110$ | $87.5^{\circ}$ | 15 | 141 | 140 | 74350 |
| $160 / 160$ | $87.5^{\circ}$ | 81 | 91 | 91 | 74550 |

## TEES (KGEA)

| DN1/DN2 <br> [mm] | Angle <br> $\boldsymbol{\alpha}$ | $\mathbf{z}_{\mathbf{1}}$ <br> $[\mathbf{m m}]$ | $\mathbf{z}_{\mathbf{2}}$ <br> $[\mathbf{m m}]$ | $\mathbf{z}_{3}$ <br> $[\mathbf{m m}]$ | Art. no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $110 / 110$ | $87.5^{\circ}$ | 59 | 64 | 64 | 74330 |
| $160 / 110$ | $87.5^{\circ}$ | 15 | 141 | 140 | 74350 |
| $160 / 160$ | $87.5^{\circ}$ | 81 | 91 | 91 | 74550 |
| $200 / 110$ | $87.5^{\circ}$ | 109 | 94 | 232 | 74630 |
| $200 / 160$ | $87.5^{\circ}$ | 143 | 121 | 257 | 74660 |
| $315 / 160$ | $87.5^{\circ}$ | 90 | 220 | 320 | 74850 |
| $315 / 315$ | $87.5^{\circ}$ | 135 | 275 | 370 | 74880 |
| $400 / 160$ | $87.5^{\circ}$ | 80 | 320 | 370 | 74940 |
| $400 / 315$ | $87.5^{\circ}$ | 145 | 335 | 430 | 74870 |
| $400 / 400$ | $87.5^{\circ}$ | 180 | 350 | 460 | 74990 |



## REDUCERS (KGR)

| DN1/DN2 <br> $[\mathbf{m m}]$ | $\mathbf{L}_{1}$ <br> $[\mathbf{m m}]$ | $\mathbf{L}_{\mathbf{2}}$ <br> $[\mathbf{m m}]$ | Art. no. |
| :---: | :---: | :---: | :---: |
| $125 / 110$ | 15 | 99 | 75340 |
| $160 / 110$ | 34 | 135 | 75350 |
| $160 / 125$ | 26 | 129 | 75450 |
| $200 / 160$ | 32 | 175 | 75560 |
| $250 / 200$ | 49 | 181 | 75670 |
| $315 / 250$ | 63 | 215 | 75780 |
| $400 / 315$ | 91 | 271 | 75880 |
| $500 / 400$ | 158 | 475 | 71190 |



## CLAY PIPE CONNECTORS (KGUS)



| DN <br> $[\mathbf{m m}]$ | $\mathbf{d}$ <br> $[\mathbf{m m}]$ | $\mathbf{H}$ <br> $[\mathbf{m m}]$ | Art. no. |
| :---: | :---: | :---: | :---: |
| 110 | 138 | 168 | 77380 |
| 125 | 164 | 172 | 77480 |
| 160 | 194 | 226 | 77580 |

## DOUBLE SOCKET CONNECTORS (KG-ERMM)



| DN <br> $[\mathbf{m m}]$ | $\mathbf{L}$ <br> $[\mathrm{mm}]$ | Art. no. |
| :---: | :---: | :---: |
| 110 | 136 | 77300 |
| 125 | 152 | 77400 |
| 160 | 185 | 77500 |
| 200 | 239 | 77600 |
| 250 | 275 | 77700 |
| 315 | 299 | 77800 |
| 400 | 345 | 77900 |
| 500 | 400 | 71170 |

## COUPLINGS (KGU)

| DN <br> $[\mathbf{m m}]$ | $\mathbf{L}$ <br> $[\mathbf{m m}]$ | Art. no. |
| :---: | :---: | :---: |
| 110 | 136 | 78300 |
| 125 | 152 | 78400 |
| 160 | 185 | 78500 |
| 200 | 239 | 78600 |
| 250 | 275 | 78700 |
| 315 | 299 | 78800 |
| 400 | 345 | 78900 |
| 500 | 377 | 71160 |



## PLUGS (KGM)

| DN <br> $[\mathbf{m m}]$ | $\mathbf{H}$ <br> $[\mathbf{m m}]$ | Art. no. |
| :---: | :---: | :---: |
| 110 | 55 | 77320 |
| 125 | 55 | 77420 |
| 160 | 70 | 77520 |
| 200 | 85 | 77620 |
| 250 | 88 | 77720 |
| 315 | 98 | 77820 |
| 400 | 116 | 77920 |
| 500 | 115 | 71180 |



## ACCESS PIPES (KGRE)

| DN <br> $[\mathbf{m m}]$ | $\mathbf{L}$ <br> $[\mathrm{mm}]$ | Art. no. |
| :---: | :---: | :---: |
| 110 | 308 | 78310 |
| 125 | 313 | 78410 |
| 160 | 380 | 78510 |
| 200 | 410 | 78610 |


$3 \mathrm{~m}=4 \mathrm{x}$

# SOLUTIONSTO LAST 

chat

## magnaplast





SIENIAWA ŻARSKA 69, 68-213 LIPINKI ŁUŻYCKIE
POLAND
TEL.: +48 683632700
WWW.MAGNAPLAST.PL


[^0]:    Maximum heights (h) or the bending radii (R) in metres for the length (L)

